
地址:上海市闵行区闵北工业区纪鹤路 128 号 电话:021-62968883 13122263282 E-mail: shdahui@163.com

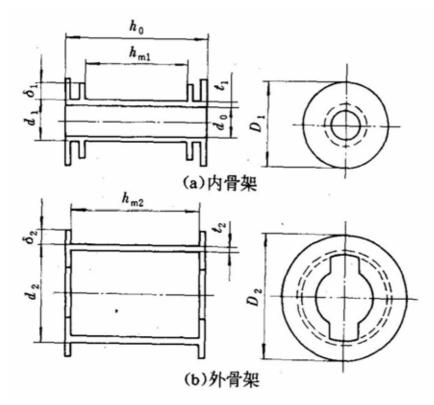
R型变压器参考设计手册

一、R型变压器的结构与特点

R型变压器是在综合C形、环形变压器优点的基础上发展起来的。与传统的变压器一样,R型变压器也是由铁心、线圈、结构件三大部分组成。但在结构上独具一格,自成一体,被称为年代变压器结构的一场革命。

R型变压器的核心部分

——R型铁心,是由一根用开料机切割成宽窄不一,即由窄到宽,由宽到窄连续均匀过渡的优质冷轧取向硅钢带卷绕而成,经热处理退火,浸渍绝缘漆,一次成型。铁心不切割,截面近似圆形,如图 所示,其常用规格及尺寸见表


图1—R型铁心 表1—R型铁心尺寸及参数表

		/mm				参考数据				
型号	d max	±1	ћ ±1	A max	В	B ₁	R	l _c /cm	S _c	G _c
R - 10	16.7	16	42	74	46 ± 1		1	16.31	1.85	230
R - 20	18.2	18	43	81	52 ± 1		1	17.63	2.30	310
R - 30	20.2	20	55	96	56 ± 1		1	20.72	2.68	425
R - 40	21.5	21	55	98	59±1	B ₁ =	1.5	21.04	3.20	515
R 50	23.2	22	53	101	64 ± 2		1.5	21.85	3.68	615
R - 80	24.5	23	74	122	66 ± 2		1.5	26.51	4.09	830
R - 100	26.0	28	70	123	74 ± 2	0.92d	1.5	27.71	4.53	960
R - 160	28.0	30	80	139	82 ± 3		1.5	30.48	5.40	1 26
R - 260	30.5	32	93	155	89 ± 3		1.5	34.01	6.23	1 620
R - 320	32.0	36	97	163	95±3		2	36.04	7.14	1 970
R - 600	38.0	37	103	182	106 ± 4		2	39.00	10.22	3 050
R-1 000	44.5	40	127	222	127 ± 4		2	47.33	13.53	5 000

上海大徽电子有限公司 专业 R 型变压器生产厂家

地址:上海市闵行区闵北工业区纪鹤路 128 号 电话:021-62968883 13122263282 E-mail: shdahui@163.com

R型变压器的骨架是用T阻燃工程塑料压制成型,制成拼装式圆形骨架,并由内外两种骨架组合而成,如图 所示。线圈绕制前先将骨架拼装在R型铁心上,用专用绕线机直接转动骨架实现线圈的绕制。一般将初、次级绕组分别绕在内、外骨架上,它有效地增加了绕组间的绝缘距离。也可只用一只内骨架,初级绕组绕在内层,次级绕组绕在外层。表2列出了常用的骨架尺寸,供参考。

R型变压器与传统的

E型插片铁心变压器相比具有以下特点:

体积小3ィ质量轻%;

漏磁小,只有E型变压器的0以下;

损耗小,温升低,与E型变压器相比,温升降低一半以下;

结构简单,噪音低;

常用卧式结构,薄形化,适合于高密度安装;

绕组呈圆形,平均匝长减少ァ1ィ铜损低, 用铜量少。

R型变压器广泛用于C机床、办公室自动化设备、计算机、电视摄像和音响设备中。 图1— R型变压器线圈骨架

表1-R型变压器线圈骨架尺寸 mm

上海大徽电子有限公司 专业 R 型变压器生产厂家

地址:上海市闵行区闵北工业区纪鹤路 128 号 电话: 021-62968883 13122263282 E-mail: shdahui@163.com

型号			内	骨	架					外 骨	架	
22.7	d ₀	d_1	t ₁	δ_1	D_1	h ₀	h mt	d2	t ₂	82	h 102	D ₂
RB ~ 10	16.8	19.2	1.2	2.3	30	39	29.2	25.9	1	2.05	27.8	30
RB – 20	18.8	21.4	1.3	2.6	34	41	31	28.7	1	2.65	31	34
RB - 30	20.5	23.1	1.3	2.8	36.5	52.5	42.5	30.8	1	2.85	42.5	36.5
RB - 40	22	24.6	1.3	2.7	38	52.5	42.5	32.1	1	2.95	42.5	38
RB - 50	24	26.6	1.3	3.2	42	50.5	40.5	35.1	1	3.45	40.5	42
RB - 80	25	27.6	1.3	3.4	44	71	59	36.5	1	3.75	59	44
RB - 100	26.5	29.1	1.3	4.6	51	68.5	58	40.6	1.1	5.2	58	51
RB - 160	29	31.6	1.3	5.0	55	73	66	43.9	1.1	5.55	66	55
RB - 260	31	34	1.5	5.3	59	88.5	78	47.1	1.2	5.95	75	59
RB - 320	32.5	35.5	1.5	6.4	64.5	94.5	82	50.8	1.2	6.85	78	64.5
RB - 600	39	42.4	1.7	6.0	71	102	92	57.3	1.4	6.85	85	71
RB-1000	46	49.6	1.8	7.4	83	126.5	111	67.3	1.4	7.85	109	83

在使用R型铁心和R型变压器时,以下两点应加以注意。 铁心材质的磁性能来确定电磁参量.

由于R型变压器的合闸电流较大,必须正确地选用熔断器,以保证整机正常工作。

二、R型变压器计算

R型变压器的计算步骤与C形铁心变压器相同,但由于R型变压器的结构特点,在计算方法上有其自身的特点。以下举例介绍其计算方法。

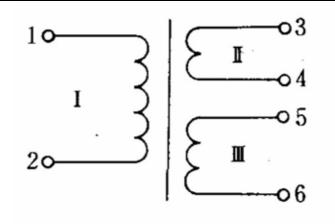
1. 变压器主要技术要求

初级输入电压 U_1 = ; 电源频率f = 50Hz; 次级输出电压 U_2 = , U_3 = V; 次级输出电流 I_2 = , I_3 = ; 电路图缤 所示。

2. 步骤与方法

溲器功率容量

 $P_2 = 5 \times 3W$


2)铁心

查表取铁心规格为R— 的

铁心功率为一本例中有一定余量。 图2— 所示电源变压器电路图

上海大徽电子有限公司 专业 R 型变压器生产厂家

地址:上海市闵行区闵北工业区纪鹤路 128 号 电话: 021-62968883 13122263282 E-mail: shdahui@163.com

选择铁心的原则是:应根据负载功率的大小,绕组的多少,电压高低,温升要求,工作环境温度等来确定铁心的规格尺寸。表1列出了设计的典型参数,供参考。

在表 中,环境温度为+,变压器温升不超过。

铁心的电磁性能建议如下:

对D— 材料,铁心在 B_0 = 下,单位铁损不超过 / , 对于 以下的铁心,可放宽至 / 。铁心磁化伏安不超过对Z— 材料 , 铁心在

Bo = 下 , 单位铁损不超过对于 以下的铁心可放 宽至 / 。铁心磁化伏安不超过铁心的磁化伏安 , 只要能满足在Bo = 下 , ○在1g以下 , 其功率因数 均能在 以上。

可根据实际使用情况,确定一个合适的 ₀值。

范电磁参量

磁感应强度选择方法同本例选用3铁心材料,其B在1.9T以下。当电网电压波动值最大为+%时,磁感应强度值宜取左右;电网电压波动值最大为+%时,磁感应强度值可取T左右。本例中,取B。= 钡缤缪勾铮%时,可保证变压器正常工作。

电流密度j和电压调整率的选择参考表具体选择方法是:功率余量小时取大值,功率余量大时取小值。

溲器绕组功率分配

变压器绕组功率分配的原则是:初级绕组应平衡分配在左右两个铁心柱上,一般,功率在 以下采用串联,以上采用并联。次级绕组既要考虑功率分配平衡,又要考虑大功率绕组在左右铁心柱中的功率平衡。电压较低,工作电流大的次级绕组宜采用并联;电压高,电流小的次级绕组宜采用串联。

本例中,初级绕组采用左右各一半串 联;次级两绕组采用左右各一半后联。

确定 次级反射到初级的电流12

 $I_2 = (I_2N_2 + I_3N_3) / N_1 = 8420 = 5$ 由于R型变压器的铁损电流与磁化电流很小,故可直接用 I_2 来确定初级导线直径。 查表,导线

上海大徽电子有限公司 专业 R 型变压器生产厂家

地址:上海市闵行区闵北工业区纪鹤路 128 号 电话: 021-62968883 13122263282 E-mail: shdahui@163.com

直径确定后,进行结构计算,核算窗口能否容纳。

表2— 型变压器计算参数表

铁心	功率				U_1	= 220V 时	参数	温升计算参考数据				
型号	容量 型号 /W		<i>j</i> /A•mm ⁻²	ΔU%	d₁ ∕mm	N ₁	连接法	α_{m0} $\times 10^3$	F _c	F _m	β	
R - 10	~15	1.70	4.0~4.5	16~20	¢0.15	1575×2	串联	1.15	42.9	92.9	0.462	
R - 20	20~28	1.70	3.8~4.5	14~18	\$0.19	1267×2	串联	1.15	54.1	112.8	0.480	
R - 30	30~45	1.70	3.5~4.0	12~15	\$0.25	1088×2	串联	1.15	64.0	149.1	0.429	
R - 40	35~55	1.70	3.3~3.8	10~13	\$0.28	911×2	串联	1.15	74.1	155.5	0.477	
R - 50	50~65	1.70	3.2~3.5	9~12	\$0.315	792×2	串联	1.05	88.5	170.6	0.519	
R-80	70~100	1.70	3.0~3.3	8~10	\$0.425	713×2	串联	1.05	96.3	237.5	0.405	
R - 100	90~130	1.70	2.8~3.2	8~9	\$0.50	643×2	串联	1.05	115.3	279.2	0.413	
R - 160	150~200	1.70	2.6~3.0	7~8	\$0.63	540×2	串联	1.00	137.1	320.9	0.427	
R - 260	200~300	1.70	2.6~3.0	7~8	\$0.75	468×2	串联	1.00	164.1	407.3	0.403	
R - 320	280~380	1.70	2.5~3.0	6~8	\$0.85	408×2	串联	1.00	182.0	480.5	0.379	
R - 600	380~650	1.70	2.4~3.0	5~7	\$0.80	570	并联	0.95	235.2	565.6	0.416	
R-1 000	650~1 000	1.70	2.2~2.5	4~6	\$1.0	431	并联	0.95	323.3	809.6	0.399	

骨架采用R内骨架跫绕线宽度为 , 可绕制厚度为外骨架渭绕线宽度为 , 可绕制厚度 为

由于绕组平衡配置,故只要计算一个线圈即可。结果如下:

/2:N₁/ 匝, d₁ = = 每层8匝, 绕6层, 绕组厚度

地址:上海市闵行区闵北工业区纪鹤路 128 号 电话: 021-62968883 13122263282 E-mail: shdahui@163.com

图2—连接

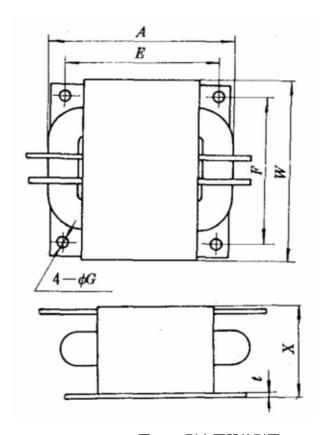


图2— R型变压器外形图

 $/2:N_2=$ 匝, $d_2==$ 层 匝,绕1层,绕组厚度; $/2:N_3=$ 匝, $d_3==$ 层 匝,绕3 层,绕组厚度。 根据以上计算,绕组能在骨架尺寸范围内配置。 如果在计算时,绕组在骨架尺寸范围内不能配置,则可改变导线直径至绕得下为止。 谱排列及连结 绕组排列及连接见图溆计算均与C形铁心电源变压器相同,在此不再赘述。

1. 3 几种典型设计绕制方法 表2— 列出了几种典型设计的R型变压器绕组排列配置

上海大徽电子有限公司 专业 R 型变压器生产厂家

地址:上海市闵行区闵北工业区纪鹤路 128 号 电话: 021-62968883 13122263282 E-mail: shdahui@163.com 方法。

2. 4 常用R型变压器规格 图2—03为卧式安装结构R型变压器外形,其尺寸规格见表

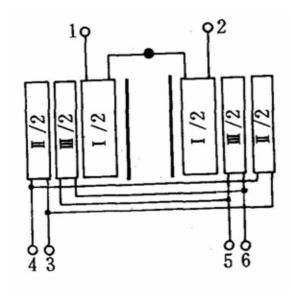


表2—几种典型的线圈绕制方法

上海大徽电子有限公司 专业 R 型变压器生产厂家

绕法	例 1: 中心抽头申接	例 2; 串 接
型号	R—10	R—160
电 路 图	220V 3 18V,0.3A 5 I 18V,0.3A 3'	100V 1 110V,1.8A 20220V 40240V
绕组连接电路图	110V 3 6 2×9V, 0. 3A 6 5 5 6 2×9V, 0. 3A 6 3 7	110V 28 110V 10V 10V 10V 10V 10V 10V 10
绕组排列图		
绕 制 数 据	$d_{12} = d_{1'2'} = 0.15$ mm $N_{12} = N_{1'2'} = 1 650$ \times $d_{34} = d_{3'4'} = d_{56} = d_{5'6'} = 0.31$ mm $N_{34} = N_{3'4'} = N_{56} = N_{5'6'} = 155$ \times	$d_{12} = d_{1'2'} = d_{34} = d_{3'4'} = 0.65$ mm $N_{12} = N_{1'2'} = 541$ 臣 $N_{34} = N_{3'4'} = 49$ 臣 $d_{56} = d_{5'6'} = 0.87$ mm $N_{55} = N_{5'6'} = 292$ 臣
AV 24-	AN 0 16 WM	AND A 11 ST. H- WA
绕法 型号	例 3: 并联 R—100	例 4: 分段并联 R-160
电 路 图	1 220V 1 15V.8A	10 220V 1 12A 1 12A 1 0V 03
绕组连接电路图	110v 15v,4A 15v,4A 20 110v 15v,4A	110V 110V 6A 0V 03 110V 6A 0V 03

上海大徽电子有限公司 专业 R 型变压器生产厂家 地址: 上海市闵行区闵北工业区纪鹤路 128号 电话: 021-62968883 13122263282 E-mail: shdahui@163.com

绕法	例 3: 并联	例 4: 分段并联
型号	R-100	R—160
绕组排列图	1/2 1/2 1/2	
绕制数据	$d_{12} = d_{1'2'} = 0.50$ mm $N_{12} = N_{1'2'} = 627$ 臣 $d_{34} = d_{3'4'} = 1.26$ mm $N_{34} = N_{3'4'} = 92$ 臣	$d_{12} = d_{1'2'} = 0.65 \text{mm}$ $N_{12} = N_{1'2'} = 541 $

绕法	例 5: 分段串接	例 6: 双组并联
型号	R-260	R-600
电路图	220V	220v 33 40v,8A 1 04 1 20 6
绕组连接电路图	110V 110V 110V 110V 20 110V 20 110V 20 110V	220V 40V, 4A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
绕组排列图	1/2 1/2 1/2 3 4 1 3 4 456	1/2 7/2 7/2 7/2 1/2
绕 割 数 据	$d_{12} = d_{1'2'} = 0.80 \text{mm}$ $N_{12} = N_{1'2'} = 464 $	$d_{12} = d_{1'2'} = 0.85 \text{mm}$ $N_{12} = N_{1'2'} = 580 \text{ M}$ $d_{34} = d_{3'4'} = d_{56} = d_{5'6'} = 1.35 \text{mm}$ $N_{34} = N_{3'4'} = N_{56} = N_{5'6'} = 111 \text{ M}$

地址:上海市闵行区闵北工业区纪鹤路 128 号 电话: 021-62968883 13122263282 E-mail: shdahui@163.com

表2—R型变压器主要尺寸表

W 15	4	卟形尺寸/mr	n		安装尺寸/mm					
型号	A	w	X	E	F	G	t	kg		
R – 10	74	61	37	68.4	48	4×5	1.0	0.4		
R-20	81	70	39	55	50	М3	1.0	0.5		
R - 30	96	77	42	70	60	\$ 5	1.0	0.7		
R – 40	98	80	.44	70	60	\$ 5	1.0	0.9		
R - 50	101	92	48	75	65	\$ 5	1.0	1.0		
R - 80	124	90	52	90	· 70	\$ 5	1.2	1.4		
R - 100	124	103	55	100	80	\$ 5	1.2	1.7		
R – 160	138	115	63	100	85	\$ 5	1.6	2.6		
R - 260	156	121	66	130	95	\$ 5	1.6	3.1		
R - 320	163	128	70	135	95	\$ 5	1.6	3.8		
R-600	182	145	85	142	100	\$8	1.6	6.5		
R - 1000	222	172	99	180	140	48	2.6	10.5		